skip to main content


Search for: All records

Creators/Authors contains: "Pinedo‐Gonzalez, Paulina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    The Southern Ocean hosts complex connections between ocean physics, chemistry, and biology. Changes in these connections are hypothesized to be responsible for significant alterations of ocean biogeochemistry and carbon storage both on glacial‐interglacial timescales and in the future due to anthropogenic forcing. Isotopes of thorium (230Th and232Th) and protactinium (231Pa) have been widely applied as tools to study paleoceanographic conditions in the Southern Ocean. However, understanding of the chemical behavior of these isotopes in the modern Southern Ocean has been limited by a paucity of high‐resolution observations. In this study, we present measurements of dissolved230Th,231Pa, and232Th on a meridional transect along 170°W from 67°S to 54°S in the Pacific sector of the Southern Ocean, with high vertical and meridional sampling resolution. We find Th/Pa fractionation factors below 1, highlighting the preferential removal of Pa relative to Th in a region with low lithogenic inputs where the particle flux is dominated by biogenic opal. We also find steep gradients in all three of these isotopes along neutral density surfaces from north to south, demonstrating the importance of isopycnal mixing in transporting these nuclides to the Southern Ocean. Our results suggest that231Pa and230Th in the Southern Ocean are highly sensitive tracers of physical transport that may find use in studies of Southern Ocean biogeochemical‐physical connections in the past, present, and future.

     
    more » « less
  3. Abstract

    The Thomas Fire began on December 4, 2017 and burned 281,893 acres over a 40‐day period in Ventura and Santa Barbara Counties, making it one of California's most destructive wildfires to date. A major rainstorm then caused a flash flood event, which led to the containment of the fire. Both airborne ash from the fire and the runoff from the flash flood entered into the Santa Barbara Basin (SBB). Here, we present the results from aerosol, river, and seawater studies of black carbon and metal delivery to the SBB associated with the fire and subsequent flash flood. On day 11 of the Thomas Fire, aerosols sampled under the smoke plume were associated with high levels of PM2.5, levoglucosan, and black carbon (average: 49 μg/m3, 1.05 μg/m3, and 14.93 μg/m3, respectively) and aerosol metal concentrations were consistent with a forest fire signature. Metal concentrations in SBB surface seawater were higher closer to the coastal perimeter of the fire (including 2.22 nM Fe) than further off the coast, suggesting a dependence on continental proximity rather than fire inputs. On days 37–40 of the fire, before, during, and after the flash flood in the Ventura River, dissolved organic carbon, dissolved black carbon, and dissolved metal concentrations were positively correlated with discharge allowing us to estimate the input of fire products into the coastal ocean. We estimated rapid aerosol delivery during the fire event to be the larger share of fire‐derived metal transport compared to runoff from the Ventura River during the flood event.

     
    more » « less